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Abstract. A new theoretical treatment of scattering in the presence of a low-frequency 
radiation field is presented. A modification of the Kroll-Watson formula, caused by the 
stochastic properties of the radiation field, is obtained. It is shown that the radiationless 
cross section remains on the mass shell, but an appropriate shift of the initial and final 
momenta strongly depends on the stochastic model used. An analytical calculation is 
carried out for the chaotic field model. 

1. introduction 

During the last few years much effort has been invested in the study of scattering in 
the presence of strong radiation fields (Mittleman 1982, Rosenberg 1982a, Faisal 1984, 
Gavrila 1985). The basic problems in this context consist in studying the plasma 
heating by lasers and the laser-driven fusion or in understanding the working principles 
of gas lasers (especially high-power) and their development. There are also astrophys- 
ical motivations consisting in studying plasmas that make up the core of stars, where 
a high density of radiant energy has to be taken into account. Accurate scattering 
calculations are, however, difficult even in the absence of the radiation field. A 
non-perturbative inclusion of the latter would make this problem prohibitively difficult. 
This is why, except for some general formal approaches, only limiting cases and/or 
tractable models have been dealt with. The analysis of limiting cases not only greatly 
simplifies calculations but also more physical insights into the problem can be gained. 
In this paper the low-frequency approximation of Kroll and Watson (1973) is con- 
sidered. 

It is obvious that no direct comparison between theory and experiment can be 
achieved without taking into account the realistic behaviour of radiation fields. This 
requires, on the experimental side, a better knowledge of the characteristics of radiation 
fields, and on the theoretical side, the development of appropriate models for treating 
more realistically the influence of light on quantum processes. It is known that light 
sources (like lasers) produce light which is not exactly monochromatic. The final width 
of the light signal comes from a smooth time dependence of the field’s envelope and/or 
from rapid chaotic fluctuations of the field’s amplitude and phase. The dynamics of 
scattering in the presence of radiation fields depends on these fluctuations, which are 
described by stochastic mathematical models. The most commonly used are the phase 
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diffusion model, the chaotic field model and the Gaussian-amplitude field model. 
Descriptions of these models can be found in the review article by Daniele et a1 (1985). 

Photon correlation effects in scattering seem to have been considered for the first 
time by Zoller (1980). In this and all subsequent papers (Trombetta et a1 1985, Daniele 
et a1 1983, Franken and Joachain 1987) only the Born approximation was considered. 
The Born approximation was also applied to the electron-hydrogen scattering in a 
chaotic field (Unnikrishnan and Prasad 1986). In this paper I report the generalisation 
of the low-frequency Kroll-Watson formula, which takes into account stochastic 
properties of radiation fields. It is shown that apart from the usual modification of 
the radiation-dependent factor, which multiplies the elastic scattering cross section of 
the radiationless process, the shift of momenta is also modified. It appears, however, 
that this modification does not bring the radiationless scattering amplitude out of the 
mass shell. 

2. Scattering matrix in low-frequency radiation fields 

Let me, then, consider the non-relativistic scattering of a charged particle by a local 
and short range potential V ( r )  in the presence of a radiation field. The light field is 
assumed to be treated classically as a plane wave in the dipole approximation. The 
electromagnetic vector potential A(  t )  in this approximation adopts the following form 
(using units in which h = 1 = c): 

A(  r )  = f i  Iom dR (a*(R) e iRr  - a(R)  e- inr)  

where a ( n )  is a complex function. I shall further assume that the spectrum of 
frequencies R is effectively bounded by a value Ro,  which is much smaller than the 
projectile’s energy, i.e. I shall adopt here the conditions of Kroll and Watson (1973). 

The S-matrix element Sfi for a transition pi+pf can be written as follows: 

Sfi= 6 ( p , - ~ ~ ) - i ( 2 ~ ) - ~  d t  d3r(FIE)*(r, t)V(r)(FI:)(r, t )  (2) 

+g’(r ,  r )  = exp(-iEft + ipf * r - ip, a( t ) )  

I 
where 

(3 )  

is the Volkov solution, and 

dR R-’(a*(n)  ein‘+ a(R)  e- iRr) .  2m 

In ( 2 )  the wavefunction (FIK) fulfils the Schrodinger equation 

(4) 

with 
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In order to find an approximate solution of ( 5 ) ,  corrections to which are of the 
order of Rg/ E’ ( E ,  is the projectile’s kinetic energy, E ,  = p f / 2 m ) ,  we make the following 
substitution: 

+ r ) ( r ,  t)=exp(-iE,t-imoi(t) r- ipl  * c ~ ( t ) ) $ ~ , ( r ,  t )  (7)  

where oi( t )  means the time derivative of a( f ) .  It can easily be checked that 4p, satisfies 
the equation 

(8)  (El(?) - &)4p,(r, t )  = --(id, + m & ( t )  * r)4p,(r ,  t )  

El(t) = p f ( t ) / 2 m  pI( t )  = p ,  + moi t ) .  (9) 

in which 

The solution of ( 8 )  (satisfying the scattering boundary conditions) fulfils the integral 
equation 

&(r ,  t )  = +zc’,,(r)- d3r’G‘+’(r, r’; E,(t))(id,+m&. r’)&(r’, t )  (10) 

which can be solved iteratively. In the above equation $2;) is the stationary scattering 
wavefunction with momentum p , ( t )  (9) modified by the radiation field and G(+)  is the 
Green function 

(11) 

J 

( E - Ho)  G(+’ ( r, r’ ; E ) = 6 ( r - r’) 

satisfying the boundary conditions with outgoing spherical waves. We can prove now 
that the contribution to the scattering matrix (2) of the last term in (10) is if the order 
of Ri/E:. Indeed, the second derivative of a( t )  behaves effectively like R i a (  t ) .  
Moreover, the wavefunction $2;) fulfils the integral equation 

+ z ; , ( r )  = $z’(r)-(mai(t)  - p , + m a i 2 ( t ) / 2 )  d3r‘ G“’(r, r’; El)$:;)(#) 

which again can be solved iteratively. It follows from such a formal solution that the 
time derivative of $2;) is proportional to &( t )  = n:a( t ) .  This means that the solution 
of ( 5 )  can be written in the form 

I 
+;)(r, t )  -exp(-iE,t -imai( t )  r-icr( t )  p,)+z; , ( r )  (12)  

plus terms whose contribution to the scattering matrix (2)  is of the order of R i /Ef .  
Substituting the above approximation into the exact expression for the scattering matrix 
we find that the S-matrix element for a transition p , + p f ,  exact up to terms quadratic 
in R,/E,, can be written as follows: 

dtexp(i&f+iA, * a ( t ) + m o i ( t )  .v,)f(pI,pf)+O(R:/Ef) 

(13)  

where 
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is the off-shell radiationless scattering amplitude. Moreover, in (13), E ,  = Ef- E i ,  
Afi = p f - p i  and V, = d / d p f + d / a p i .  Let us note in passing that for a( t )  = a. sin(ut) we 
obtain the Kroll-Watson formula, 

where 

An = nwmao/(ao - An).  (16) 

Moreover, when f (  pi,  pr) in (13) becomes proportional to the Fourier transform of the 
potential, V(A,), we get the well known expression for the scattering matrix in the 
Born approximation. 

With the help of expression (13) one obtains for the non-forward collision process 
the following equation: 

dt  dt’ exp(iEfit -iEht’) 

x ~ f i ( t ,  t’)f(Pi, Pf).f*(Pi, ~ ; ) l p ; = p , , p ; = p ,  + O( a:/ E ? )  (17) 

where 

I f i ( t ,  t ’ )=exp(iA,-a( t ) - iA& * a ( t ‘ ) + m & ( t )  -V,+md.(t’) . V & )  (18) 

and Eh,  A; and V &  are defined with p :  and PI. (i.e. V &  = a/ap;+a/ap:, etc). 

3. Chaotic field model 

Let us consider initially the simplest case of the chaotic field model with the vanishing 
bandwidth. The last simplification is not very restrictive because, as has been shown 
(Trombetta et a1 1985, Daniele et a1 1983, Franken and Joachain 1987) the only effect 
of the non-zero bandwidth is to give a spread of 8-like peaks in the double differential 
cross section d2a /df l  dEf at final energies corresponding to the exchange of an integral 
number of photons. 

In order to determine the ensemble average of ISfi12, it is sufficient to calculate such 
an average for the function Zfi(t, r’). It is known (Zoller 1980, Daniele et a1 1985, 
Gardiner 1983) that for the chaotic field model the function a( t )  is a Gaussian stochastic 
process, and that 

( I f , (  t, t ’ ) )  = exp[ - ;( (A, - a( t )  - A& - a( t ’ )  - im&( t)V, - i m h (  t’)V;)’)] (19) 

where the angular brackets denote ensemble averaging. The ensemble average in the 
exponent of (19) for the nearly monochromatic radiation field can be calculated by 
writing the vector a( t )  in the form 

(20) a( t )  = d(  t )  e-’”‘ + d*( t )  elw‘ 

where d ( t )  is a stochastic amplitude of a( t )  slowly carying in time. The correlation 
functions of the complex amplitude d( t )  are assumed to be constants (for the vanishing 
bandwidth). For the unpolarised radiation field we have 

(d,(t)d,?(t’)) = iDS,, W,(t)d,(l’)) =o. (21) 
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With these correlation functions we arrive, after some simple manipulation, at 

((A, . a( t )  - Ah a( t ’ )  - im&( t )  V, - im&( t ’ )  * VX)’) 

= D(A;+Af)-2DAfi * A ~ c o s [ w ( ~ - ~ ‘ ) ]  

+ 2imwD(A,-, Vh + A &  V,) sin [ w (  t - t‘)] 

plus terms proportional to w 2 ,  thus leading to corrections to the scattering matrix 
which are of the order of w 2 /  E;,  and where the time derivative of the complex amplitude 
d ( t )  has been neglected. Taking account of the well known properties of the Bessel 
functions with imaginary argument, i.e. 

I n  + 1 ( z) - I n  - 1 (z)  = - (2n / 2 )  I n  ( 2 )  (24) 

one immediately obtains 

( I , ( t ,  t ’ ) )  = 1 exp[-inw(t - t ’ ) ]  exp[-iD(Ai+Ak?)] 
‘1 

n = - x  

xIn(DAfi*Ak) ex~[-nwm(Ati .v&+Ak.vfi)/Afi *AX1 (25) 
plus terms proportional to w 2 .  

probability w, per unit time, 
With the help of this result it is straightforward now to obtain the transition 

A Z H  = nwmA,/Ai (27) 
and becomes now (i.e. for the chaotic field model) proportional to the momentum 
transfer A,. One can easily check that 

(28) 
i.e. all radiationless scattering amplitudes in (26) remain on the mass shell. We will 
see that this property holds in general, independently of the stochastic models used. 

Equation (26) allows us to put down the differential cross section for the scattering 
process with n photons absorbed ( n  > 0) or emitted ( n  < 0) as follows: 

C H  2 -  ( P i - A n  ) -(pf-A:H)2 

where, due to the conservation of energy, p :  = p z  + 2mnw. This is the required generalisa- 
tion of the Kroll-Watson formula (Kroll and Watson 1973) and of the result presented 
by Zoller (1980) to the case of the chaotic field model. Using (13) for the scattering 
matrix in the presence of low-frequency radiation fields, one can immediately (at least 
formally) obtain such a generalisation to an arbitrary stochastic model. 

Let us also consider another example of the chaotic field model in which 

a( t )  = a,, sin(wt) + as( t )  (30) 
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where 

as(r) = aC(t) e-’“+aT;(t) eiw‘ (31 )  

with a complex amplitude aG( t )  slowly varying in time. It is assumed that cyG( t )  has 
Gaussian stochastic properties (with the zero bandwidth), i.e. 

( a G i ( f ) a T ; l ( t ’ ) )  = ( a ~ i ( t )  acj( t ’ ) )  = 0 (32) 

where (6)u = D, is a constant matrix. After some simple algebraic manipulations we 
arrive at the following expression for the cross section: 

It can be checked that the radiationless scattering amplitude remains on the mass shell. 
Moreover, with 6 = 0  we recover the Kroll-Watson formula, and with ao=O and 
D, = DS, we obtain (29). 

4. Arbitrary stochastic field model 

Having illustrated the application of (13) to the simple chaotic model let us show now 
that the results obtained previously can be generalised to the case of an arbitrary 
stochastic field model. To this end let us note that 

( z f i ( t ,  f ’ ) )=I(Afi ,  t ;AA, t’)+J(Afi, f;AA, 2 ’ )  .Vfi  

+J*(AA, 1’; Afi, t )  *VX+O(Ri/E’)  (36) 

where 

t ;  AA, t ’?  = I*(Ak, t ’ ;  Afi, t )  

= (exp(iA, a( t )  - iAk a( r ‘ ) ) )  (37) 
and 

J ( A f i ,  t;AA, t ’ ) = m ( d . ( t ) e x p ( i A ~ . a ( t ) - i A ; , . a ( t ’ ) ) ) .  (38) 
Defining new functions f(Afi ,  a; AA, a’) and j ( A f i ,  R;  Ah, R’) through the equations 

Z(Afi, t ;  AA, 2 ‘ )  = d R  dR’exp(- iRt+iR’t’)f(Afi ,R; AA, 0’) (39) I 
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and 

J(A,,  t ;  AA, 2 ’ )  = d R  dR’exp(-iRt+iR‘t’)j(A,,R; AA,R’) (40) 5 
we arrive, after some simple algebraic manipulations, at  the following equation: 

(Isfi l2)=(2~m)-’j(bt-i ,  En, An, Efi))f(Pi-A(Ati, En), P~-A(A,-, ,  &))I’ (41) 

(42) 

One can also prove that the elastic radiationless scattering amplitude in (41) remains 

in which 

A (A,-,, E ~ )  = -AA,, E,; A,-,, E ~ ) /  U , ,  E ~ ;  A,-,, E,). 

on the mass shell. Indeed, it follows from (40) and (38) that 

Afi * j(A,, E f i , A n ,  E,-,) = - i m ( 2 ~ ) *  d t  d t ’  (43) 5 
x exp[iEfi( t - t‘)]d,(exp(iA,-, a( t )  -iA,-, * a( t ‘ ) ) ) .  

It follows from this equation and  from the definition (42) of the momentum shift A that 

mE, 5 Afi A (A,-,, E d .  (45) 

( p i  - A ) ~  = ( p , . - ~ ) * .  (46) 

It is to be noted, however, that for the adopted stochastic field model the functions i 
and A in (41) still remain to be calculated. In this sense this result is formal. 

The last equation expresses indeed the ‘on-mass-shell’ condition, i.e. 

5. Primary conclusions 

In this paper a new theoretical treatment of the potential scattering in the presence of 
a low-frequency radiation field has been presented. It has been shown how terms 
linear with respect to Ro/E, can be accounted for in order to obtain a modified 
Kroll-Watson formula. The method presented here can be applied to a radiation field 
of any stochastic properties. I have carried out the analytical calculation for the 
simplest chaotic field model, showing explicitly how the result obtained by Zoller 
(1980) is modified by terms proportional t o  the frequency w .  Without conceptual 
difficulties one can generalise results obtained for other stochastic models. It appears 
that in all these cases the radiationless cross section remains on the mass shell. However, 
the shift of momenta strongly depends on the stochastic model used. It should be 
noted that such a shift is a universal quantity in the sense that it does not depend on 
the form of interaction. 

6. Perspectives and prospects 

How can we improve the approximation (12) of the wavefunction in order also to take 
account of higher terms of the expansion in Ro/Ei?  The answer to this question, as 
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recently developed by Rosenberg (1982b, 1986), is the so-called modified perturbation 
theory for scattering in radiation fields. The approximation (12) can be treated as the 
trial function of the Rosenberg approach. However, in order to develop the systematic 
iteration procedure also a suitable trial Green function has to be chosen. It can be 
checked, using the same methods as before, that 

K R ( r ,  t ;  r‘, t ’ ) = i 8 ( t - r ’ ) e x p ( - i m & ( t ) .  r )  d3qexp[-iE,(r-t’)] 

(47) 

5 
x $ r ’ ( r ) + r ) * ( r ’ )  exp(imc+(t’) - r ’ )  

where the notation jd3q  is meant to include a sum over discrete states as well as 
integration over the continuum, and 8 is the step function. In  the above equation KR 
is the retarded Green function which fulfils the equation 

[id,  + ( i V +  e A ( t ) ) ’ / 2 m  - V ( r ) ] K R ( r ,  t ;  r‘, t ‘ )  = S ( r  - r ’ ) 8 ( t -  r ‘ )  (48) 

and $:’ are the eigenfunctions of Ho (equation (6)). Treating the approximation (47) 
as the trial Green function in the Rosenberg approach we can also take account of 
higher orders of the low-frequency expansion. 

The method presented in this paper can be immediately adapted for the scattering 
of electrons by composed systems (like atom or molecules, but also impurities in 
crystals). Namely, let $:)( rl , * , r N t l ,  t )  be the radiationless time-dependent 
wavefunction that describes the scattering of an electron by an N-electron system. 
Such a function can be quite well determined by the variational methods (Nesbet 
1980). Hence, the following low-frequency approximation holds: 

$ y ’ ( r l ,  9 * * , rN+I 9 1 ;  A )  

5 ‘  N + l  

= exp( -im r, * c+( t )  - ipi a( t )  - i ( e2A2( r’)/2m) dt’ 
/ = I  

where (U( t )  and pi( t )  are determined by (4) and (9), respectively, and the wavefunction 
$:’( rl , . . . , r N + l ,  t ;  A ) ,  describing a process in the presence of a radiation field A(  t ) ,  
fulfils the Schrodinger equation 

In the above equation V, = a/ar, and V (  rl , * * , r N + l )  is the static potential describing 
the interaction of components without the radiation field. 
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